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1 Introduction

The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling
of the interaction between lzsers and plasmas. In inertial confinement fusion, initial laser pulses ablate
material from the hohlraum, whkb contains the target, creating a plasma. Plasma density variations due to
plwma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt
smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational
simulations aid immensely in developing an understadhg of these effects.

In thk paper, we compare the accuracy of two methods for calculating the propagation of laser light
through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion
and a laser propagation model. These two pieces interact with ewh other as follows. Fkst, given the
plasma density, one propagates the laser with a refractive index determined by thk density. Then, given the
hser intensities, tbe calculation of one time step of the plmma motion provides a new density for the laser
propagation. Because thk procedure repeats over many time steps, each piece must be performed accurately
and efficiently.

In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with
a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to
solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current
capabWies.

To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking
the partial approximation applies when one expects negligible backscattering of the light and only mild
scattering transverse to the dkection of light propagation. This approximation results in a differential
equation that is first-order in the propagation direction that can be integrated accurately and efficiently
even for large computational domains.

Thk paper explores the domain of vaMty of a pam..xial approximation in laser-plasma simulations.
High-intensity lasers may create high-density plasmas and induce extremely large and abrupt plasma den-
sity variations. Such variations in high-density plasmas can reflect or scatter a significant fraction of the
incident light. However, as stated, the paraxial approximation assumes negligible backscatter. Furthermore,
interference of incident and scattered waves may produce regions of high-intensity light that the partial
approximation fails to pred]ct accurately. Certainly, the paraxial approximation serves as an excellent ap-
proximation in many problems. We hope to provide insight into when it accurately models the problem and
when it does not.

To explore the vtdklity of the approximation we compare the Helmholtz equation solution to the paraxial
wave equation solution for a variety of fixed plasma densities on a reduced computational domain. As
stated above, a time-dependent comparison on a large computational domain is currently infeasible. We
first introduce the pertinent physical equations. We then derive the paraxial approximation, highlighting
the approximating assumptions. A brief explanation of the numerical methods follows. Finally, we present
a graphical comparison of the solutions for several examples.

2 Electromagnetic Waves in Plasmas

We now discuss the applicable equations for the light propagation and the ponderomotive force. Fhthermore,
we exsmine the reflection of light from sharp interfaces. This lends insight into when we should expect
significant reflection and the effect this has on laser intensity.

2.1 Relevant Equations

We sketch a derivation of the relevant equations following [7]. (See also [8, p. 7-31], [1, p. 2245] and [9, p.
141–144].) The microscopic formulation of Maxwell’s equations reads

1

V.E = :, (1)

V.B = o, (2)



~xE . _~

at ‘ (3)

VXB = MJ+$~. (4)

(Note that poq& = 1,) Taking the curl of (3) and substituting (4) into the result gives

(AE-+~) -V(V. E)-&=O. (5)

We neglect ion oscillations due to the electromagnetic wave because they are much more massive than
the electrons. Hence, only tbe electron motion due to the wave contributes to the current, J. Assume that
the electrons and ions have velocities v and vo, respectively. Then, let

“’=V— VO. (6)

This implies that
J = –nev’ , (7)

where e and n give the electron charge and number density, respectively. Finally, we assume that the
electrons undergo only small perturbations to some background density, pressure and temperature. Then,
the following approximates the electron equation of motion.

~~ . ~~ . _eE

at at ‘ (8)

where m is the electron maw.

Remark. We have followed common practice in neglecting the convective term, the Lorentz force, ion-
electron collisions and the pressure gmdent term in the electron equation of motion. However, some question
remains as to whether we may neglect these terms in some situations that we consider in this paper, namely,
large, sharp variations in the relatively high pla$ma densities.

Assuming a time-harmonic solution, E(x, t) = E’(x) e-iut, and combining equations (5), (7) and (8), we
arrive at

()

w; (x)
AE+k2 1–= E–V(V. E)=O, (9)

where w; = ~ is the plasma frequency and k = w/c is the wave number in a vacuum.
We would like to know when the term in (9) containing V E may be neglected. The time-harmonic E

must drive J at the same frequency. Hence, (7) and (8) give us
2

J=~E=i&E. (lo)

Then, taking the divergence of (4), we obtain

VE=-?> (11)

where qz = 1 – $. In particular, as long = q # O, thk term vauishes when the inhomogeneity in n(x)
lies in a plane perpendicular to E. Note also that when the variation in q is small compared to TIitself,
we may neglect this term regardless of the polarization of the electric field. However, for simplicity we
will restrict ourselves to the twc-dimensional problem with TE polarized waves, i.e., we will consider only
functions n(x) = + V) with E’(x) = u(z, u)e,, where e, is the unit ~ectOr in the z-~lrectiOn. T~ls yields
the equation of interest, the Helmholtz equation.

Au(z, V) + kzqz(z, V)U(Z, IJ) = 0. (12)

Thk equation also describes the scattering of Depolarized waves by a dielectric medium. However, for
plasmas the “index of refraction: q is always less than one instead of being larger than one as for normal
dielectric materials. Ilwthermore, a soon = Up becomes l=ger th~ U, v becOmes purely imagin~y ~d
the wave attenuates quickly in the phwma. We denote by n. tbe density at which UP = w, ~SO c~led the
critical density.

2



Table 1: Hsflsction coefficients for various sharp interfaces and background densities

2.2 Ponderomotive Force

In seeking to understand how using the para.xizd approximation affects the simulation of laser-plasma inter-
actions, we must have some understanding of the mecbaaisms by which they interact. As discussed in tbe
previous section, the varying plssma density influences the propagation of the laser. On tbe other hand, the
laser influences the plasma primarily through the ponderomotive force.

We will not derive the ponderomotive force from the physics; see [9, p. 31-33] or [3, p. 305-309] for a
more detailed dkcussion. Denoting the ponderomotive force by FP, we have

FP = –:$VIE12 (13)

Note that the ponderomotive force is proportional to the variation in the intensity. Hence in comparing the
paraxial to the Helmholtz equation solutions we will compare not only the intensity, but also the magnitude
of the intensity .gmdent.

2.3 Reflection from Sharp Interfaces

We now explore tbe reflection of a normal incidence wave by sharp interfaces to gain addkional insight into
the problem. Assume that an incident wave, El = eik~t’e=, traveling in a region with q = ql encounters
a sharp interface, q = qz. (We have dropped the factor of e- ‘it in the incident wave.) Solving Maxwell’s
equations with appropriate bounday conditions, one obtains [6, p. 33-1–33-11]

L (VI- m)’
R=z=(q1+7#’ (14)

where Ii and 1, are the intensities of the incident and reflected wave, respectively. Tbe energy that is not
reflected ends up in the transmitted wave. If the interface is not sharp, we will see less reflected light. Thus,
we can get some idea of the maximum intensity we would see in the reflected wave from this ratio.

Table 1 lists the percentage of incident intensity in the reflected wave for various values of initizd plasma
density and three different sharp interfaces, (1) a ten-fold drop in plasma density, (2) a hundred-fold drop
in plasma density and (3) a drop to a plasma density of zero. Thk last value gives an upper bound on the
reflection with the given initial density. Hence, if the initial density is given by n = an., then

m = G,

Notice that relatively little light reflects except in the caae of high background density. One should bear
in mind, however, that high-intensity lssers produce density peaks as well as density valleys. Therefore, even
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EETa
a I 1 1;.. I:.,ma.

0.10 1.05 1.05 1.05

0.25 1.14 1.15 1.15

0.50 1.34 1.37 1.37

0.75 1.73 1.77 1.78

Table 2: Maximum intensities in interfering incident and reflected waves

with a small background density at the beginning of the simulation, the plasma may develop significant
density peaks and thereby observe significant reflection.

Furthermore, the effect of interference can also become quite important, even with small initial densities.
For example, assume that the incident wave, El = eikfl’, produces a reflected wave, E, = ~e–ik~’+i$, where
6 is a positive real number and d accounts for aw phase shift in the wave. Then, the intensity of the total
wave in front of the sharp interf&e is proportion~ ~o

Itot = le’kn’ + ~e-w+:o ,2

= 1 + @ + 2~c0s(2k7pl! + ~)

Thk is a stadng wave with twice the frequency of the incident wave with maximum value

Ima. = l+2f3+@2

= (1+0)’,

If no interference takes place, we observe a total intensity proportional to 1 + Dz < (1 + o)z = Ire...
normal incidence on a sharp interface, we have

~= Im -qzl

IV1+ml

Table 2 lists the value of I.,,.. for different backound densities and sharp interfac= as in Table 1

For

As
shown. this interference can substantially tiect the intensity of the light in front of the interface. Also,
the highly oscillatory intensity in front of the interface may increase th~ ponderomotive force and thereby
influence the motion of the plasma. In ptilcular, since the ponderomotive force is proportional to the
gmthent of the intensity, if one neglects interference, the pondemmotive force on the plasma in front of the
interface would equal zero (for plane wave incident waves).

However, if we take the interference into account, the pondemmotive force is proportional to

which may be quite large at certain values of z for high frequency waves.

3 Paraxial Approximation

We derive briefly the paraxiaJ approximation and discuss its assumptions. Here we follow [5] quite closely.
First, we write the Helmholtz equation in the following form

(P’ + Q’)u = 0, (15)
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(This holds for three dimensions. In two dimensions, Al = $. ) Equation (15) is equivalent to

{(P+ iQ)(P-iQ)+i[P, Q]}U=O, (16)

where [P, Q] = PQ – QP. The pamxial approximation first assumes that [P, Q] w O. Roughly speaking, this
assumption holds when q varies little in the z-direction. Considering only forward traveling wave solutions,
this leaves

au
— iQu

%–
(17)

Thk approximation explicitly removes any backscattered waves. As pointed out in Section 2.3, we do indeed
expect very little backscatter when the refractive index varies slowly.

One can easily veri& that

We now aasume that [n, Q] = O. This condition holds when q varies slowly in the g- and z-directions.
In particular, thk implies that we expect to see very little scattering in any dkection transverse to the
incident wave. In addition, under these conditions, we assume that q s qO in the first term of (18), where
qO is a function of z only. One may think of ~ as an average or background refractive index. After some
manipulation, this leaves

Q w (AL+ k2q;)’/’ +k(q - qo) (19)

We use this form of the paraxiai approximation.

Remark. There are other perhaps more widely used forms of the paraxial approximation. In particular, by
assuming that Al << karl~ we can linearize the square root in (19) to obtain

However, we choose not to make this add]tiond approximation

4 Numerical Methods

To compare the paraxial approximation to the full solution of the Helmholtz equation, we need an imple-
mentation of each approach. For the paraxial approximation, we use a code written by Dorr and Gamizar [4]
following the approach in [1]. The full Helmholtz solver is based on the method introduced by Bruno and
Sei [2]. In the following sections we describe these implementations briefly.

4.1 Paraxial Approximation Implementation

Because we expect the solution to have only a small transverse component, we make the following change of
unknown

:k J:. IJ,(.’) d.’
CJ(z, y) = U(z, y)e (20)

where q: is the average of qz in g. More clearly, since qz = 1 – $ and since u; depends linearly on the
electron density, q: corresponds to the average of the electron density in y. FYom (19) and (17) we then
obtain

~ = i [(A1 + k2&)1/2 – km] u +ik(q – qo)u (21)

We then approximate q – ~ hy aasuming that tF1s dMerence is small. Let U& be the average Of w; in
~. Then, considering q to be a function of w~, we expand T – m about COk using a first-Order TaylOr



——

Hence, we arrive at

()!?2 !?-1
2 q:

au

x ()=‘[(A’+’2~)1’2-’~l~+’% $-1u
= @+R)rl,

(22)

(23)

where

D = i [(A1 + k2q;)’/2 – kqo]

One may think of the operators D and R as a diffraction and refraction operators, respectively. They
separate the differentiation with respect to u from the variation of q in II.

To generate a solution for (23), we use operator splitting

au

x = RU

au
z = DU.

(24)

(25)

We then take alternating steps in z, using the output of the last for the input of the next thereby propagating
the solution forward. FormaJly, we write

U(z + Az,g) = U(z,g)e*Re4”De*R. (26)

Hence, more specifically, we take a half-step with 1?, a full-step with D and then another half-step with R.
This method has an error proportional to (Az)3 [5, p. 635].

Solving (24) amounts to a simple integration in z. Using the midpoint rule, we obtain

{

.kqo(z + Az/4) qz(m + Az/4, U) _ ~
U(z + Ac/2, v) = U(z, v)exp t

2 [ q~(z + Az/4) 1} (27)

To solve equation (25), we impose periodic boundary conditions on the domain in the @rection and
compute the Fourier components of the solution. Thk removes any difficulties associated with the square
root in the operator since the operator is diagonal in Fourier space. Note that although periodic boundary
conditions ae not technically correct, as long as the domain has a large enough extent in the @rection,
the laser intensity will be so small that imposing a periodic condition does not introduce too much error.
Let cc

U(z, g) = ~ fJj(z)eikJU, (28)
j=.m

where kj = ~j and L is the size of the dOm~n in the @rectiOn.
By direct calculation we see that applying D to U multiplies the Fourier components U](z) by (–k; +

k2q~)1/2 – kqo. Hence solving (25) in Fourier space using the midpoint rule yields

(“ {fJj(z + Az) = flj(z) exp tAz [–k; + k’q~(z + At/2)] 1“ – k~(z + Az/2)}) (29)

6



Of course, we then use (28) to compute U(Z + Ax, o). By using the fast Fourier transform we can thereby
compute these solutions very efficiently.

Given an irdtial wave profile, we use (27) and (29) and follow the formal description of the algorithm given
by (26) to propagate the solution. This method allows us to efficiently compute solutions to the pamxial
wave equation over large domains.

4.2 Helmholtz Equation Solver

We now give a brief description of the implementation of the full Helmholtz equation solver. Assume that
there exists a compact subset of the plane, 0, such that

q(z,y)=~, (Z, y)g (l.

Then, we find the solution of the Helmholtz equation by inverting the Lippmann-Schwinger integral equation

i(k~)2
u(x) = u’(x) – ~

/
H;(kmlx – yl)m(y)u(y) dy ,

n
(30)

where x and y are twc-component vectors, u;(x) is the incident wave and

~(x)=l-~.

The incident wave must satisfy
Aui + kaq;ui = O

in the entire plane. Notice that m(x) = O for x @ 0. An accurate and efficient solution to this integral
equation relies on accurate and efficient methods (1) to compute the integral in (30) and (2) to solve the
associated linezr system.

Since fl is compact we can find a disc centered at the origin with radius R swh that Q c R. We can then
perform the integral in polar coordhates. However we first make use of the following important addition
theorem (see [2])

If~(km31ae’$ - m{o[) = ~ fi(a, ~)euf~-~) , (31)
1=–W

where
fi(a, r) = A(k-qo min(a, r)) H~(km max(a, r))

and where we associate x with ae’” and y with rei~. If we also express u(x) and u’(x) in polar coordinates
as Fourier series in their azgular variable for each radius,

.
u(a, ~) = ~ ul(a)ei’$

1=–m
.

Ui(a, @) = ~ ui(a)eil$ ,
1=–CC

then after some manipulation we obtain

u, (a) = u:(a) –
vln~(”’)l’”m(’’)~(’’)oa’’oa’dr

(32)

We then truncate the Fourier series and solve this system of equations for 1 = –M... M for some positive
integer M. As we increase M the truncated series converges to the true solution at a rate that depends on
the smoothness of the solution.

We restrict our attention to cases in which the electron density and hence also q and m are smooth
functions in the plane. In this case u is also smooth and the Fourier series converges rapidly. In this case,

7



the trapezoidal rule also evaluates the angular integral in (32) to high-order accuracy. (In fact, the trapezoidal
rule gives exponential accuracy when integrating over the period of an analytic periodic function.) The fast
Fourier transform provides efficient evaluation of this integral.

For the radkd integration define

I
2.

xl(r) = m(r, c9)u(T, O)e–ilo d.9.
0

For each radial discretization point, O < a < R, we must evaluate

Without discussing toomany complicating details, weaccomplish thlsbyapproximating n(r) with atrun-
cated Chebyshev series,

...
II(r-) = ~ Cpn(r) ,

k=o

on each of several sublntervals of [O,R]. We complete the integration by evaluating moments of the form

I
@

Ji (kqor)T~ (T) dr
o

and

!

R
H; (kq~r)l’~ (r) dr

.

The associated linear system is non-symmetric and indefinite.
Residual (GMRES) iterative method for solving linear systems.

Hence we use the Generahzed Mmimcd
GMRES requires only a matrix vector

product ~dpefiorrnsw ellfors everdexmplesi ncludingt hoses hownint hisp aper. However, asthe problem
size increases (kmR >> 1) and as the contrast between the inhomogeneity and the background refractive
index grows, GMRES convergence typically slows and computation of solutions becomes infeasible. Well-
chosen preconditioners can partially remedy thb problem, but the problem of computing the scattering from
electrically large bodies remains a difficult and active field of research.

5 Examples

Using the implementations described above we directly compare the paraxial and the Helmholtz equation
solutions. Denote the Helmholtz equation solution by u(h) and the partial equation solution by u(P). In the
following we compare the solutions for three different electron density functions. We dkcuss the scattering
from a single density valley (a region of decreased electron density), from multiple peaks (regions of increased
electron density) and valleys and, fintdly, from a density function given by actual output from a laser-plasma
interaction simulation.

We compute each solution on a grid that is fine enough to ensure sufficient convergence and then compute
the solution intensities, I(h) = Iu(h) 12 and I(p) = Iu@) 12. After interpolating the Helmholtz solution
intensity from its polar grid to the paraxial solution’s Cartesian grid we compute the pointwise difference
in intensity. Since the maximum intensity varies significantly with the background electron density for a
given arrangement of inhomogeneities, we then divide by the maximum of the Helmholtz solution intensity
to obtain a type of relative error. More precisely, given a common grid G, we compute

(35)
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(a) Single Valley (b) Multiple Peaks and Valleys

m= for ~ious background densitiesTable 3: Comparison of e.

where
If’X = max I(h) (z, U)

(%u)=~

This relative error allows us to compare the methods over a range of background densities.

5.1 A Single Valley

In typical laser-plasma simulations several separate density peaks and valleys develop due to the plasma
motion and the ponderomotive force (see Figure 2(a)). These peaks and valleys are long in the direction
of laser propagation, but narrow in the transverse direction. Hence, we first examine the scattering from a
single long and namow density valley in a variety of background densities.

Of course, since single valleys do not arise in actual simulations we propose an approximate mml~,cal
description of the valley. The valleys may dlp as low as 10-%o where no is the background density. (This
value is not critical, however, because as shown in Tables 1 and 2, we would not expect the scattering to
depend strongly on the valley depth.) Hence we use the following density function

n(s, y) =

{

nO~-~..s2(~ [$+$])], if$+$<l
(36)

no, otherwise.

Thk valley has a minimum of 10-2n0 and its support coincides with the set of points (z, y) such that
Z2/82 + V2/ 12 S 1, where the unit of measure is one vacuum wavelength of the incident light. The boundary
of this set is an ellipse with major axis of 8 and minor axis of 1. Tbe incident plane wave has unit intensity
and propagates parallel to the z-axis. The plots of solution intensities and relative error for a background
electron density no = 0.5nc are found in Figure 1(a–c). In these plots, the c-axis lies along the line of the
sharp intensity peaks.

Table 3(a) shows the maximum absolute value of the relative error,

e~= = ~=mu~ger(z, ~) ,

for several other background densities. Notice the strong agreement for 0.1%. At the same time, one observes
strong disagreement for 0.75%. On the other hand, we should mention that for density values thk kuge,
the original model may even be called into question.

Density valleys such as the one we are considering focus the light into a series of intensity peaks. These
peaks contribute significantly to the ponderomotive force. The plots in Figure l(a–c) show that the partial
solution disagrees with the Helmholtz solution in both the height and location of the sharp peaks. One
could speculate that this difference might be caused by either the paraxial solution’s lack of backscatter and
the amociated interference or its damping of high-order transverse modes, which could alter the location of
sharp foci.

5.2 Multiple Peaks and Valleys

Now we consider multiple peaks and valleys each in the form (36). We attempt to construct a simple small
model of a I&er-pla.sma simulation density profile as typified by Figure 2(a). One often observes two long
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density peaks on either Bide of several smaller peaks and valleys. We have observed that the density peaks
may rise as high as 1.5rh-l.75nw fn this -pie all peaks rise to 1.5n0 and all valleys dlp to 10-2n0.

We place two elliptical psaks with major and minor axes of 8 and 2, respectively, parallel to the z-axis
and with centers separated by 6 vacuum wavelengths. Then, between these peaks, mnning parallel to the
z-axis with centers separated by 5 vncuum wavelengths, we place a valley, a peak amd another valley. The
two valleys have major and minor axes of 3 and 1, respectively, and the peak has major and minor axes of
2 and 1, respectively.

The plots of solution intensities and relative error for a background density of 0.4n. appear in F~re l(d-
f). As in the previous example, the valleys focus the liiht into severzd intensity spikes. At the same tiie,
the density peaks bend the light away from their centers, further channeling and concentrating the light in
the center. One observes that the peaks in the paraxial and the Helmholtz solution dfier significantly in
height. Furthermore, the inten*ty of the light prOWgating out at ~ Wgle fiOm the PrimW Pe* ‘@ms
to be larger in the Hehnholtz solution than in the pa.mxiaJ solution.

Table 3(b) lists the maximum absolute value of the relative error for vwious background densities. As
for the single valley, one quickly observes that the agreement between paraxial and Helmholtz intensities
increa.m as background density decreases.

5.3 Densities From Simulation Data

Thecarefulexamination of these simple examples provides insight and intuition for the more general problem.
At the same time, a density profile generated by an actual laser-plasma simulation provides psrhaps a more
reIevant comparison. After all, if we observe no significant difference in such an sxample then one cnuld
dwmiss the differences observed in the simple examples & contrived or coincidental.

In this example, the code developed by Dorr and Gamizar [4], which uses the paraxkd approximation
dkcussed in this paper for the light propagation, provides the density profile as shown in Figure 2(a). This
was produced by a simulation of a CH-plssma, initially at rest, with au initial background density of 0.5%
and an average ionization number of 3.5. A 1 micron wavelength kwer with 2 x 1015 W/cmz peak intensity
and a width of 40 wavelengths illuminated the plasma in a 64x 64 wavelength domain for approximately 50
picosecond.

To avoid any anomalous edge reflections, we need to smooth the density profile to the background density.
Outside a disc with a 60 wavelength dkuneter centered in the domain we set the density to the background
density 0.5nc. Then, over 4 wavelengths at the edge of the disc, we smooth the density profile from its
computed value to the background density.

Figure 2 provides plots of tbe density profile, the partial and Helmholtz intensities and the relative
error. Once again we note significant difference in the height of the peaks. 13mthermore, it appears that the
methods agrse rather well on the first peak, but that the remaining peaks oscillate in height exactly opposite
of each other. More specifically, when the Helmholtz intensity has a large peak, the corresponding peak in
the partial intensity is smaller and vice versa.

6 Conclusion

The paraxiaJ approximation makes the simulation of large-scale laer-plasma interactions pnssible. The
fdl Helmholtz equation (or Maxwell equations) remains too d1f6cult to solve for such huge computational
domains. However, = shown in this paper, the p=~~ apprOximatiOn may f~l tO prOdu~ sufficiently
accurate results especialy in high-density plasma% Certainly, as shown, typical examples for whkh the
background density approacfw or exceeds 0.4% may produce significant errors. At the same time, because
of the many adjustable parameters, i.e., simulation time, domain size, laser intensity and profiIe, and the
extremely complicated phenomena associated with laser-plasma interactions, thsre are not simple, absolute
criteria for determining when a solution is accurate and when it is not.

Fhture research directions include an mmlysis of the source of the discrepancies that we have observsd.
We might then be able to remedy some of the error introduced by the approximations. One might also
develop o posterioti error estimates. These would allow one to determine when the partial approximation
holds, although they would still not allow simulation at higher densities.
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